Publication date: Available online 2 March 2016
Source:Building and Environment
Author(s): José Abel Rodríguez Algeciras, Lourdes Gómez Consuegra, Andreas Matzarakis
The conservation of historical urban centres is an important resource to encourage liveability and sustainable development of cities in the context of global climate change. It is a complex process that serves diverse perspectives, among them is the thermal comfort. The paper analyze the contribution of street configuration towards the improvement of thermal comfort at pedestrian level, in the Old Town of Camagüey-Cuba (World Heritage Site). Simulations performed are run for summer and winter solstices by using RayMan model. The urban settings are represented by symmetrical street canyons (380m long, 9m width), with different orientations (i.e. N-S, NE-SW, E-W, NW-SE) and aspect ratios (i.e. H/W= 0.5, 1, 1.5, 2, 3, 4, 5). Results are presented in terms of Physiologically Equivalent Temperature. Our findings confirm that the spatial distribution of thermal conditions at street level, depend strongly on aspect ratio and street orientation. The results show extreme patterns of thermal comfort between N-S and E-W streets. Rotation to N-S orientation is a valid strategy to mitigate the heat stress in summer, with reductions of up to 2 hours at the center of the street. Aspect ratios between 1 and 1.5 offer a quite acceptable thermal performance for summer and winter. PET patterns discussed give information about the most suitable locations for pedestrian within the street. The urban guidelines presented enable to urban planners rehabilitate and design cities, which are able to reduce the impact of thermal stress in hot-humid climates. The results could be included in the Urban Regulations of Camagüey.
Source:Building and Environment
Author(s): José Abel Rodríguez Algeciras, Lourdes Gómez Consuegra, Andreas Matzarakis