Quantcast
Channel: ScienceDirect Publication: Building and Environment
Viewing all articles
Browse latest Browse all 2381

Prediction of whole-body thermal sensation in the non-steady state based on skin temperature

$
0
0
Publication date: October 2013
Source:Building and Environment, Volume 68
Author(s): Satoru Takada , Sho Matsumoto , Takayuki Matsushita
The goal of this study is to propose a new model for predicting thermal sensation in the non-steady state based on skin temperature and its time differential. A multiple regression equation for the prediction of the transient thermal sensation as a function of mean skin temperature and its time differential is determined based on the data obtained in subject experiments involving various non-steady state patterns during sedentary conditions. The results indicate a high correlation and a trend in good agreement between the predicted and experimental thermal sensations in a non-steady state, and showed that the proposed equation can predict transient whole-body thermal sensation with high precision. In addition, experiments incorporating processes with changes in metabolic rate (walking) were conducted on the subjects, and the applicability of the proposed equation, which was based on the data for sedentary conditions, to the conditions involving such a change in metabolic rate was studied. When the skin temperatures of all the body segments increase or decrease simultaneously, the predicted thermal sensation agrees well with the experimental results, allowing for the use of the proposed equation, while the application of the equation is more difficult for the cases in which skin temperature increases and decreases coexist over the segments of the body.

Graphical abstract

image

Viewing all articles
Browse latest Browse all 2381

Trending Articles