Quantcast
Channel: ScienceDirect Publication: Building and Environment
Viewing all articles
Browse latest Browse all 2381

Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions

$
0
0
Publication date: May 2015
Source:Building and Environment, Volume 87
Author(s): Yu-Hsiang Cheng , Chi-Chi Lin , Shu-Chen Hsu
Building materials (BMs) are major contributors to indoor emission sources of volatile organic compounds (VOCs). In this study, 8 kinds of BMs (including conventional and green) for ceiling, cabinetry, and flooring commonly used indoors were tested in a 216 L chamber. Primary emissions of carbonyls (C1 to C8 aldehydes and ketones) at 48 h were 75–673 μg m−2 h−1 from conventional BMs, and 62–151 μg m−2 h−1 from green BMs. Primary emissions of BTEX at 48 h were 59–264 μg m−2 h−1 from conventional BMs, and 37–56 μg m−2 h−1 from green BMs. Ozone initiated molar yields of carbonyls were 0.10–2.36 from conventional BMs, and 0.13–0.86 from green BMs. Secondary emissions of carbonyls were 7–150 μg m−2 h−1 from conventional BMs, and 4–73 μg m−2 h−1 from green BMs. Green BMs had lower emissions than conventional analogs, especially for wooden flooring and gypsum board. BMs with mineral content are the most promising materials in this study, given moderately high ozone deposition velocity but generating the least byproducts. Secondary emissions determined in this study demonstrate that moderate indoor ozone concentrations may lead to increased concentrations of carbonyls, especially formaldehyde and acetaldehyde that potentially increase adverse chronic health effects.


Viewing all articles
Browse latest Browse all 2381

Trending Articles